Modeller for CO₂-koncentration i et lokale

Man kan stille mange forskellige modeller op for CO_2 -koncentrationen i et lokale.

Den simpleste indeholder kun CO_2 -produktion fra personerne i lokalet og udluftning/ventilation. Hertil kan så tilføjes forskellige ting. Det kan f.eks. være et tilstødende rum/gang eller man kan stille på hvor meget ventilatoren kører.

Udfordringer med modellerne:

De modeller vi har opstillet og gennemgår nedenfor, passer godt med data for et lokale, hvor man ikke ændrer på "opsætningen" undervejs. Dvs. man må f.eks. ikke midtvejs i målingen begynde at lufte ud eller lade alle elever forlade lokalet.

Hvis man vil inddrage det i løsningerne i Excel, skal man ændre differentialligningerne på det tidspunkt, hvor man ændrer forholdene.

I Exhaustos CO_2 -beregner kan man se, hvordan CO_2 -koncentration ændrer sig i et lokale, når man skiftevis har undervisning og pause. (se litteraturlisten)

Parametre mm.

Inden vi gennemgår de forskellige modeller, kommer her først en gennemgang af de parametre der går igen i alle/de fleste modeller.

 N_1 , N_2 , N_3 er CO_2 -koncentrationerne (L/m^3) i hhv. lokalet, udendørs/udluftningsluft og i et evt. tilstødende lokale/gang.

 N_2 (*CO*₂-koncentrationen udendørs) antages konstant i alle modeller, dvs. $\frac{dN_2}{dt} = 0$

 V_1 , V_3 (m^3) er rumfanget af lokalet og et evt. tilstødende lokale/gang.

 k_2 er produktionsraten af CO_2 (L/h) fra personerne i rummet.

- For en 16-18-årig: ¹ $0,34 \frac{L}{min} = 20,4 \frac{L}{h}$
- For en voksen: $0,47 \frac{L}{min} = 28,2 \frac{L}{h}$
- En klasse med 25 elever og en lærer producerer derfor ca. $540\frac{L}{h}$

Vi har regnet med en CO_2 -koncentration udendørs på 400 ppm.

l vores beregninger har vi brugt, at vores undervisningslokaler er ca. 8 x 8 x 2,8 m. - Dvs. $V_1 = 179 m^3$

Det er ikke praktisk at regne CO_2 -koncentrationen i ppm. Derfor omregner vi til $\frac{LCO_2}{m^3 luft}$, dvs. i praksis bare $\frac{L}{m^3}$ $400 \ ppm = \frac{400 \ LCO_2}{1000000 \ L luft} = 0,0004 \frac{L}{\frac{1}{1000} m^3} = 0,4 \frac{L}{m^3}$

¹ Int. J. Environ. Res. Public Health 2017, 14, 145, Review and Extension of CO₂-Based Methods to Determine Ventilation Rates with Application to School Classrooms

Modeller

Model 1

Model 1 er den simpleste model. Her indgår kun luftudskiftning ved enten ventilation eller udluftning. Raten hvormed luften udskiftes sættes til at være proportional med forskellen mellem CO_2 -koncentrationerne ude og inde.

Kompartment-model:

Differentialligninger:

$$V_1 \cdot \frac{dN_1}{dt} = k_1 \cdot (N_2 - N_1) + k_2$$
$$\frac{dN_2}{dt} = 0$$

 k_1 : luftudskiftningsraten (m^3/h) enten ved ventilation eller udluftning

Model 2

I model 2 kan man stille på hvor meget ventilationssystemet er tændt (0-100%)

Hvis CO_2 -koncentrationen inde er mindre end A, er ventilationen slukket.

Når CO_2 -koncentrationen ligger mellem A og B, vokser ventilationsraten lineært fra 0-100%. (se udregning nedenfor)

Hvis CO_2 -koncentrationen inde er større end B, er ventilationen på 100%

Kompartmentmodel: k2 Nr Kr. vent.rate N2 lokale ude

Differentialligninger:

$$V_{1} \cdot \frac{dN_{1}}{dt} = k_{1} \cdot HVIS\left(N_{1} < A; 0; HVIS\left(A \le N_{1} \le B; \frac{N_{1} - A}{B - A}; 1\right)\right) \cdot (N_{2} - N_{1}) + k_{2}$$
$$\frac{dN_{2}}{dt} = 0$$

 k_1 : luftudskiftningsraten (m^3/h) ved ventilation

Ventilationsraten:

Model 3

Model 3 inddrager et tilstødende lokale/gang udover luftudskiftning som i model 1. Raten for luftudskiftningen mellem de to lokaler sættes til at være proportional med forskellen mellem CO_2 -koncentrationerne.

Differentialligninger:

Kompartment-model:

$$V_1 \cdot \frac{dN_1}{dt} = k_1 \cdot (N_2 - N_1) + k_2 + k_3 \cdot (N_3 - N_1)$$
$$\frac{dN_2}{dt} = 0$$
$$V_3 \cdot \frac{dN_3}{dt} = k_3 \cdot (N_1 - N_3)$$

 k_1 : luftudskiftningsraten i lokale (m^3/h) enten ved ventilation eller udluftning k_3 : luftudskiftningsraten til tilstødende lokale/gang (m^3/h) ved åben dør

Model 4

Model 4 er en udvidelse af model 3, hvor gangen også har udluftning. Alle raterne for luftudskiftning sættes til at være proportional med forskellen mellem CO_2 -koncentrationerne.

Kompartment-model:

Differentialligninger:

$$V_1 \cdot \frac{dN_1}{dt} = k_1 \cdot (N_2 - N_1) + k_2 + k_3 \cdot (N_3 - N_1)$$
$$\frac{dN_2}{dt} = 0$$
$$V_3 \cdot \frac{dN_3}{dt} = k_3 \cdot (N_1 - N_3) + k_4 \cdot (N_2 - N_3)$$

 k_1 : luftudskiftningsraten i lokale (m^3/h) enten ved ventilation eller udluftning

 k_3 : luftudskiftningsraten til tilstødende lokale/gang (m^3/h) ved åben dør

 k_4 : luftudskiftningsraten i tilstødende lokale/gang (m^3/h) enten ved ventilation eller udluftning

Løsning af modellerne

Det er kun model 1, der kan løses analytisk. De andre modeller må løses numerisk.

Model 1

Først løses $\frac{dN_2}{dt} = 0$ $N_2(t) = konstant$, kaldes N_2 fremadrettet Så løses $V_1 \cdot \frac{dN_1}{dt} = k_1 \cdot (N_2 - N_1) + k_2$ Først omskrives til $N'_1 = \left(\frac{k_1}{V_1} \cdot N_2 + \frac{k_2}{V_1}\right) - \frac{k_1}{V_1} \cdot N_1$ Ved hjælp af Panserformlen eller lignende fås: $N_1(t) = \frac{\frac{k_1}{V_1} \cdot N_2 + \frac{k_2}{V_1}}{\frac{k_1}{V_1}} + c \cdot e^{-\frac{k_1}{V_1} \cdot t} = \frac{k_1 \cdot N_2 + k_2}{k_1} + c \cdot e^{-\frac{k_1}{V_1} \cdot t}$

Konstanten *c* bestemmes: $N_1(0) \equiv N_{1,0} = \frac{k_1 \cdot N_2 + k_2}{k_1} + c$

Dvs.
$$c = N_{1,0} - \frac{m_1 m_2 m_2}{k_1}$$

Løsningen er derfor:

$$N_{1}(t) = \frac{k_{1} \cdot N_{2} + k_{2}}{k_{1}} + \left(N_{1,0} - \frac{k_{1} \cdot N_{2} + k_{2}}{k_{1}}\right) \cdot e^{-\frac{k_{1}}{V_{1}} \cdot t}$$

Numerisk løsning af modellerne

Numerisk løsning af differentialligninger kan gøres på flere måder.

En mulighed er at bruge et modelleringsprogram, f.eks. Modellus.

Modellus bruger Runga-Kutta af 4. orden.

Programmet kan f.eks. downloades her: https://intra.fr-gym.dk/downloads/Modellus.html

Vi har valgt at bruge Excel og Eulers metode til at løse de forskellige modeller.

Vores Excel-ark er vedlagt.

Hvis man i et Excel-ark ønsker at se hvilke formler, der står i de forskellige felter, kan man gå ind i menuen "Formler" og vælge "Vis formler".

Nedenfor kan man se, hvordan det ser ud før og efter man har valgt "Vis formler".

I felterne D2-D8 kan man se modellerne skrevet som henholdsvis differentialligninger og som de bruges i Eulers metode.

Hvis man ønsker at ændre de forskellige værdier i modellen, kan det gøres i de gule felter. Hvis man ønsker at ændre modellen, skal man skrive de nye differentialligninger i kolonnerne E-G.

"Vis formler" i Excel

"Almindelig" visning:

1	А	В	C	D	E	F	
1	Model 1						
2							
3	∆t =	0,01	h	N1' = (k1*	(N2-N1)+k2)/V1	
4	V1 =	179	m^3	N2' = 0			
5	k1 =	1000	m^3/h				
6	k2 =	540	L/h	$\Delta N1 = (k1^{*}(N2-N1)+k2)/V1 * \Delta t$			
7				ΔN2 = 0			
8							
9							
10	Tid	N1	N2		ΔN1	ΔN2	
11	h	L/m^3	L/m^3		L/m^3/h	L/m^3/h	
12	0,000	0,400	0,400		0,030	0,000	
13	0,010	0,430	0,400		0,028	0,000	
14	0,020	0,459	0,400		0,027	0,000	
15	0,030	0,486	0,400		0,025	0,000	
16	0,040	0,511	0,400		0,024	0,000	

"Vis formler":

1	A	В	C	D	E	F			
1	Model 1								
2									
3	<u>Δt</u> =	0,01	h	N1' = (k1*(N2-N1)+k2)/V1					
4	V1 =	179	m^3	N2' = 0					
5	k1 =	1000	m^3/h						
6	k2 =	540	L/h	$\Delta N1 = (k1^{*}(N2-N1)+k2)/V1 * \Delta t$					
7				ΔN2 = 0					
8									
9				2					
10	Tid	N1	N2		ΔΝ1	ΔN2			
11	h	L/m^3	L/m^3		L/m^3/h	L/m^3/h			
12	0	0,4 0,4			=(\$B\$5*(C12-B12)+\$B\$6)/\$B\$4*\$B\$3	=0			
13	=A12+\$B\$3	=B12+E12	=C12+F12		=(\$B\$5*(C13-B13)+\$B\$6)/\$B\$4*\$B\$3	=0			
14	=A13+\$B\$3	=B13+E13	=C13+F13		=(\$B\$5*(C14-B14)+\$B\$6)/\$B\$4*\$B\$3	=0			
15	=A14+\$B\$3	=B14+E14	=C14+F14		=(\$B\$5*(C15-B15)+\$B\$6)/\$B\$4*\$B\$3	=0			
16	=A15+\$B\$3	=B15+E15	=C15+F15		=(\$B\$5*(C16-B16)+\$B\$6)/\$B\$4*\$B\$3	=0			
	200 00000								